Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Chinese Journal of Applied Physiology ; (6): 78-82, 2004.
Article in Chinese | WPRIM | ID: wpr-333710

ABSTRACT

<p><b>AIM</b>To investigate the neural network and cellular mechanisms of hippocampal epileptogenesis contralateral or ipsilateral to the side of acute tetanization (60 Hz, 2 s, 0.4 - 0.6 mA) of the posterior dorsal hippocampus (ATPDH).</p><p><b>METHODS</b>10 trains of the ATPDH were administered into the CA1 basal dendritic region of the right hemisphere at an interval of 10 minutes.</p><p><b>RESULTS</b>(1) The firing rate of CA1 single neuron in the right or the left hippocampus was inhibited respectively after the ATPDH, and the effects weakened gradually while the trains of the ATPDH increased. The inhibited firing rate and the transformed firing pattern from tonic one to clonic one were more obvious at the side contralateral to the stimulation (62.94% +/- 3.68%, 36.61% +/- 3.14%, P < 0.01). (2) Synchronous primary afterdischarges of depth EEG and single unit discharges were more commonly observed at the side ipsilateral to the ATPDH (P < 0.01). (3) Primary or secondary hippocampal network afterdischarges at high frequency were only found in CA1 region ipsilateral to the ATPDH. (4) Secondary afterdischarges of CA3 basal dendritic neural network were completely synchronized with those of subicular single neuron, which reoccurred and persisted several hours.</p><p><b>CONCLUSION</b>It is possible that post-inhibition bursting of single neuron and recurrent network seizures in the hippocampus contralateral to the artificial focus be the important manifestation of the formation of "epileptic networks" across from one hemisphere to another.</p>


Subject(s)
Animals , Male , Rats , Electric Stimulation , Hippocampus , Physiology , Neural Pathways , Physiology , Rats, Sprague-Dawley , Seizures
2.
Acta Physiologica Sinica ; (6): 663-671, 2003.
Article in Chinese | WPRIM | ID: wpr-290910

ABSTRACT

The purpose of our present work was to study the discharge of bursting-firing neurons (BFNs) in ipsilateral or contralateral hippocampus (HPC), and its relations to the reestablishment of local epileptic networks. The experiments were performed on 140 Sprague Dawley male rats (150-250 g). Acute tetanization (60 Hz, 2 s, 0.4 -0.6 mA) of the right posterior dorsal hippocampus (ATPDH) was administered to establish rat epilepsy model. The single unit discharges and the depth electrographs were simultaneously recorded from ipsilateral or contralateral HPC. In other experimental rats, acute tetanization of the right anterior dorsal HPC (ATADH) was used. Extracellular unit discharges in the CA1 region were simultaneously recorded from bilateral anterior dorsal hippocampi. Analysis of hippocampal BFN firing patterns before or after administration of the tetanization was focused on according to their location in the HPC epileptic networks in vivo. Single unit discharges of 138 hippocampal neurons were recorded from ipsilateral and/or contralateral anterior dorsal HPC. Of the 138 neurons recorded, 19 were BFNs. 13 BFNs were tetanus-evoked and the remaining 6 were spontaneous ones. The evoked reactions of the single hippocampal neuron induced by the tetanization mainly included: (1) the firing patterns of the BFNs in ipsilateral anterior dorsal HPC were obviously modulated by the ATPDH from tonic firing into rhythmic bursting. The bursting interspike intervals (BISI) decreased. (2) There were mild modulations of the firing patterns of the BFNs in contralateral anterior dorsal HPC following post-inhibition of the firing rate of single neuron induced by the ATPDH. The interspike intervals (ISI) increased obviously. (3) Post-facilitation of rhythmic bursting-firing of the BFNs in contralateral anterior dorsal HPC was induced by ATADH; both the ISI and the IBI increased. (4) Synchronous or asynchronous rhythmic bursting-firing of the BFNs and the network epileptiform events ipsilateral or contralateral anterior dorsal HPC were elicited by the ATPDH. The results obtained suggest that bursting-firing of single BFNs is produced by the ATPDH in the anterior dorsal HPC along the longitudinal axis of the ipsilateral HPC or across the hemisphere to the opposite HPC. Rhythmic activities of the BFN may be implicated in the epileptic network reestablishment of the HPC. On the other hand, synaptic modulation of the BFN temporal series might be responsible for pathophysiological information transmission in the HPC-epileptic network.


Subject(s)
Animals , Male , Rats , Electric Stimulation , Electrophysiology , Epilepsy, Temporal Lobe , Evoked Potentials , Hippocampus , Nerve Net , Neurons , Physiology , Rats, Sprague-Dawley , Synaptic Transmission
SELECTION OF CITATIONS
SEARCH DETAIL